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Onset of plume convection in mushy layers
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A weakly nonlinear analysis is employed to investigate the onset of plume convec-
tion in the mushy layer of a binary solution directionally solidified from below.
An improved mathematical model including the constant pressure condition at the
melt/mush interface is applied to analytically analyse the nonlinear behaviour of
the convection. Results show that, due to the consideration of the constant pressure
condition at the interface, the present analytical results are much better in com-
parison with the experiments than those obtained by previous studies, in which the
no-vertical-flow condition at the interface was considered. It is also shown that the
bifurcation to three-dimensional hexagon convection, corresponding to the onset of
plume convection, is subcritical. For the case of small concentration ratio C (equa-
tion (5b)) the channel of the plume is generated at the top of the mush and grows
downwards into the mush. For the case of large C, the channel may be generated
at the interior of the mush and grow upwards to the top of the mush. The possible
parameter regime in which the flow is of a stable down-centre hexagon is discussed.

1. Introduction
When a binary solution, such as ammonium chloride solution, is directionally so-

lidified from below, a mushy layer forms between the melt region above and the solid
region below due to the undercooling-induced morphological instability on the solid-
ification front. During the solidification process, as a result of the rejection of lighter
fluid upon solidification, several different kinds of convection have been observed in
experiments. They include salt-finger convection, plume convection, bulk-fluid con-
vection, and double-diffusive layer convection (see for example, Copley et al. 1970;
Chen & Chen 1991; Tait & Jaupart 1992; Chen 1997). Most of the research efforts to
date have studied salt-finger and plume convection, because of their potential relation
to the formation of freckles, a highly undesirable feature deteriorating dramatically
the mechanical properties of the casting of metallic alloy. The stability characteristics
of salt-finger convection have been investigated theoretically by, for example, Worster
(1992) and Chen, Lu & Yang (1994) and experimentally by, for example, Tait &
Jaupart (1992). The stability features related to plume convection have been studied
by, for example, Tait, Jahrling & Jaupart (1992), Amberg & Homsy (1993), Emms &
Fowler (1994), Worster & Kerr (1994), Chen (1995), Chiareli & Worster (1995), An-
derson & Worster (1995), and others. These investigations focused on the convection
in the mush due to the fact that the plumes come directly out of the mush, leading to
the inference that the driving mechanism of plume convection is internal to the mush.
Recently, Worster (1997) has summarized the development of the relevant research
in a review article, to which the readers may refer for more details.

Plume convection, which is an up-flow in a vertical narrow channel in the mush,
is fundamentally a nonlinear phenomenon, as suggested by Fowler (1985), Worster
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(1992) and Chen et al. (1994) and recently confirmed by Amberg & Homsy (1993)
and Anderson & Worster (1995). Tait et al. (1992) found from their experiment that,
as plumes are observed, the convection is of a hexagonal planform, with down-flow at
the centre (down-centre) and up-flow along the perimeters of the hexagon. The chim-
ney is formed at the nodes where edges met, where the crystals are dissolved due to
the interaction of convection and solidification. To study this nonlinear flow, Amberg
& Homsy (1993, hereafter denoted as A&H) employed a weakly nonlinear approach
to analyse the stability of both the two-dimensional roll and the three-dimensional
hexagon convection in the mushy layer. They found that the two-dimensional roll
bifurcates either supercritically or subcritically from the steady basic state, depending
on the value of K1 (cf. (22)), a parameter governing the change of the permeability
with the solid fraction. The three-dimensional hexagon bifurcates transcritically with
an up-flow at the centre of the hexagon (up-centre), which contradicts the experi-
mental finding of Tait et al. (1992). Recently, Anderson & Worster (1995, hereafter
denoted as A&W) have tried to resolve this contradiction by considering the asym-
metries of the system associated with the basic-state density curvature, higher-order
variation of permeability, and interaction between temperature and solid fraction.
They also chose different physical scales so that a more reasonable asymptotic expan-
sion can be applied. They showed also that the three-dimensional hexagon bifurcates
transcritically while both up-centre hexagons and down-centre hexagons can be
stable depending on the control parameters of the system. Nevertheless, the param-
eter regime for the stable down-centre hexagon is found to be significantly different
from the experimental value.

As pointed out by Worster (1997), a major shortcoming of the above two nonlinear
analyses (i.e. A&H and A&W) is the use of the impermeable condition on the
melt/mush interface, which allows no vertical flow to pass through the interface.
Thus the mushy layer is completely isolated from the melt above, in spite of the fact
that the dynamic coupling between the mush and the overlying melt can determine to
a significant extent the stability characteristics of the flow in the mush. According to
Worster, the use of the no-vertical-flow condition is expedient because, by doing so, the
governing equations and associated boundary conditions can be solved analytically.
In the present paper, we will show that, by considering the more realistic constant
pressure condition, which allows a vertical flow through the melt/mush interface,
the governing equations and associated boundary conditions are still analytically
tractable.

The use of this constant pressure (or permeable) condition at the melt/mush
interface leads to a great improvement to the analytical results. For example, we find
that the parameter regime for the stable down-centre hexagon is possibly much closer
to the experimental result than that of A&W. Through an investigation into the
variation of solid fraction, we find that the plume may be generated either at the top
of the mush or in the interior of the mush, depending mostly on the concentration
ratio C, a parameter accounting for the ratio of the compositional difference between
the solid and the solution to the compositional variation of the liquid of the mush.
We also point out that the global stability behaviour of the present system is to
some extent different from that of A&W. This indicates that the permeable boundary
condition on the melt/mush interface, as predicted by Worster (1997), plays a crucial
role in determining the stability characteristics of the convection in the mush. We thus
infer that, in order to capture completely the intrinsic characteristics of the convection
in the mush of the directional solidification system, consideration of the influence of
the flow of the overlying melt may be necessary.
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Figure 1. Schematic description of the physical system considered. The mushy layer is sandwiched
between the fluid layer above and the solid layer below. The melt in the fluid layer is of concentration
C0 and temperature T∞ and the solid is of eutectic temperature TE . The mush is of constant thickness,
growing upwards into the melt with a constant speed V .

In the following, we describe in § 2 the present physical system and the corre-
sponding governing equations as well as the associated boundary conditions. In § 3
we derive the basic state and the perturbation equations. In § 4 we perform a weakly
nonlinear analysis to investigate the stability of both the two-dimensional roll and the
three-dimensional hexagon. In § 5 we analyse the stability of the amplitude equations.
In § 6 we focus on the stability characteristics of the hexagon and discuss the factors
influencing the sense of the flow at the centre of the hexagon. In § 7 the variation
of solid fraction in the mush is considered. In § 8 the global stability analysis is
presented. In § 9 a comparison of the critical Rayleigh numbers of the theoretical and
experimental results is made. Finally, in § 10 several concluding remarks are made.

2. Problem description and formulation
Consider the system shown in figure 1: a binary solution of concentration C0 and

temperature T∞ solidified from below. The mushy layer is sandwiched between the
melt above and the eutectic solid below. Both the melt/mush and the mush/solid
interfaces are assumed moving upwards with a constant velocity V . Assume that
the solution concentration C0 is greater than the eutectic concentration CE and the
solution temperature T∞ is higher than the liquidus temperature TL(C0). Assume
also that the mushy layer is in a state of thermodynamic equilibrium so that the
temperature and concentration of the mush satisfy the following liquidus relation:

T = TL(C0) + Γ (C − C0), (1)

where Γ is the slope of the liquidus, assumed to be constant. The density of the fluid
can then be written as

ρ = ρ0[1 + β(C − C0)], (2)

where β = β∗ − Γα∗, α∗ and β∗ are respectively thermal and solute expansion
coefficients, and ρ0 is the reference density.

We employ the following scales to render the equations dimensionless: velocity by
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V , length by κ/V , time by κ/V 2, and pressure by κµ/Π(0). In the above scales, κ is the
thermal diffusivity, µ is the dynamic viscosity, and Π(0) is the reference permeability.
The permeability of the mush is a function of the solid fraction φ, i.e. Π = Π(φ).
The non-dimensional temperature (or concentration) can be written as

θ =
T − TL(C0)

∆T
=
C − C0

∆C
, (3)

where ∆T = TL(C0)−TE and ∆C = C0−CE , so that ∆T = Γ∆C . Note from (3) that
due to the liquidus relation (1) the temperature and concentration of the mush must
be the same.

We employ a Galilean transformation that fixes the coordinates on the mush/solid
interface. The non-dimensional governing equations in the mush are(

∂

∂t
− ∂

∂z

)
(θ −Fφ) + u · ∇θ = ∇2

θ, (4a)

(
∂

∂t
− ∂

∂z

)
[(1− φ)θ + Cφ] + u · ∇θ = 0, (4b)

K(φ)u = −∇p− Rmθêz, (4c)

∇ · u = 0. (4d)

As discussed more fully below, governing equations in the melt are not required in
the present analysis. Equations (4a) to (4d) are respectively the energy conservation
equation, solute conservation equation, Darcy equation, and continuity equation. In
them, the material properties of the solid and liquid phases are assumed to be identical,
the solute diffusion is neglected because the solute diffusivity is very small, and the
Boussinesq approximation is considered. The Stefan number F, the concentration
ratio C and the Rayleigh number Rm are defined as

F ≡ L
c∆T

, C ≡ Cs − C0

∆C
, Rm ≡ gβ∆CΠ(0)κ/V

κν
, (5a–c)

where L is the latent heat per unit volume, c the specific heat per unit volume, Cs
the solid concentration, g the gravitational acceleration, and ν the kinematic viscosity
of the liquid. To understand the physical meaning as well as the influence of these
three parameters, the reader may refer to, for example, Worster (1992) and Chen et al.
(1994). Special notice should be given to the Rayleigh number Rm, which measures the
ratio between the destabilizing compositional buoyancy and the stabilizing thermal
diffusion, is a major parameter accounting for the stability of the system. The function
K(φ) is defined as

K(φ) =
Π(0)

Π(φ)
, (6)

which describes the relation between the permeability and the solid fraction.
At the melt/mush interface, A&H and A&W considered that the concentration

remains at C0 and the solid fraction is zero. To further simplify the problem, they
assumed that no flow is allowed to penetrate through the interface. The mushy
layer was accordingly isolated from the melt above. In the present study, we follow
the derivation of Emms & Fowler (1994) to decouple the mush from the melt. We
assume that the Darcy number, a dimensionless parameter measuring the ratio of
the average spacing between crystals of the mush to the characteristic length due
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to thermal diffusion, is small, and the pressure across the interface is continuous.
Consequently, we obtain that the pressure is constant along the melt/mush interface,
which is equivalent to the vertical gradient of the vertical velocity being zero. On
the other hand, the mush/solid interface is considered as an impermeable, isothermal
rigid boundary, as considered by A&H and A&W. These boundary conditions can
then be written as
at z̄ = 0

θ = −1, w = 0; (7a, b)

at z̄ = δ

θ = 0,
∂w

∂z
= 0, φ = 0, (8a–c)

where δ is the dimensionless depth of the mushy layer. At z̄ = 0 the boundary is of
eutectic temperature and is impermeable. At z̄ = δ, the temperature is the liquidus
temperature, the vertical gradient of vertical velocity is zero (or pressure is constant),
and the solid fraction is zero. The above equations are the same as those considered
by A&H and A&W except for (8b). We note that the position of the melt/mush
interface is still fixed, being different from the reality that the interface is deformable.

3. Basic state and perturbation equations
We consider the near-eutectic approximation (Fowler 1985; A&H; A&W), assuming

that C0 is close to CE (so that C is large) and δ � 1. We then let

C = C/δ, (9)

and assume C = O(1) as δ → 0. We also let

F = F/δ, (10)

and assume F = O(1) as δ → 0.
We follow A&H to rescale the time and space based on the mushy-layer depth δ

and define a new Rayleigh number R

(x, y, z) = δ(x, y, z), t = δ2t, R2 = δRm. (11a–c)

The rescaled governing equations are(
∂

∂t
− δ ∂

∂z

)(
θ − F

δ
φ

)
+ δu · ∇θ = ∇2θ, (12a)

(
∂

∂t
− δ ∂

∂z

)[
(1− φ)θ +

C

δ
φ

]
+ δu · ∇θ = 0, (12b)

δK(φ)u = −∇p− R2θêz, (12c)

∇ · u = 0. (12d)

Equations (12a–d) allow a motionless steady basic state solution, depending only
on the vertical position. By assuming u = 0, we obtain from (12a–d) the following
equations for the basic state:

d2θB

dz2
+ δ

dθB
dz
− F dφB

dz
= 0, (13a)
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C
dφB
dz

+ δ
dθB
dz
− δ d

dz
(φBθB) = 0, (13b)

dPB
dz

+ RθB = 0, (13c)

where the subscript B denotes the basic state. The associated boundary conditions
are
at z = 0

θB = −1, (14)

at z = 1

θB = 0, φB = 0. (15a, b)

The above equations can be solved by asymptotically expanding the dependent
variables with respect to δ, yielding

θB = θB0 + δθB1 + · · · = (z − 1)− δΩ
2

(z2 − z) + · · · , (16a)

φB = δφB = δφB0 + δ2φB1 + · · ·

= −δ z − 1

C
+ δ2

[
− (z − 1)2

C
2

+
Ω

2C
(z2 − z)

]
+ · · · , (16b)

in which Ω = 1 + F/C . Equations (16a, b) show that the assumption δ � 1 renders a
virtually linear temperature (or concentration) distribution and C = C/δ � 1 renders
a small solid fraction such that the permeability can be taken to be uniform. Because
of the motionless state, the basic state solutions of (16) are the same as those of
A&W, in spite of the use of the different boundary condition (8b) at the melt/mush
interface.

The perturbation amplitude is measured by ε, so that the dependent variables can
be written as

θ = θB(z) + εθ̂(x, y, z, t), (17a)

φ = φB(z) + εφ̂(x, y, x, t), (17b)

u = ε
R

δ
û(x, y, z, t), (17c)

p = RPB(z) + RεP̂ (x, y, z, t). (17d)

Meanwhile, we follow A&W and define a ‘slow time scale’ τ

τ = ε2t, (18)

such that the very slow development of the convection in the mush can be properly
described. We note from (12) that, since u always appears together with δ, it is
therefore necessary to rescale u by 1/δ, as shown in (17c). We substitute (17) into
(12) and eliminate the basic state by using (13), yielding the perturbation equations
as follows: (

δ
∂

∂z
− ε2 ∂

∂τ

)(
θ̂ − F

δ
φ̂

)
− Rθ′Bŵ + ∇2θ̂ = εRû · ∇θ̂, (19a)
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δ
∂

∂z
− ε2 ∂

∂τ

)[
(1− δφB − εφ̂)θ̂ −

(
θB − C

δ

)
φ̂

]
− Rθ′Bŵ = εRû · ∇θ̂, (19b)

∇2(Kŵ)− ∂

∂z
(û · ∇K) + R∇2

Hθ̂ = 0, (19c)

∇2(Kû)− ∂

∂x
(û · ∇K)− R ∂2

∂x∂z
θ̂ = 0, (19d)

∇2(Kv̂)− ∂

∂y
(û · ∇K)− R ∂2

∂y∂z
θ̂ = 0, (19e)

∇ · û = 0, (19f)

in which θ′B = dθB/dz and ∇2
H = ∂2/∂x2 +∂2/∂y2. The perturbed boundary conditions

at z = 0 are

θ̂ = 0, ŵ = 0, (20a, b)

and at z = 1 are

θ̂ = 0,
∂ŵ

∂z
= 0, φ̂ = 0. (21a–c)

Note that, except for (21b), equations (19), (20) and (21) are identical to those of
A&W, and the basic states of the present model and A&W are also the same.

Since both the basic-state solid fraction and the corresponding perturbation are
small, we can expand the inverse of the permeability function K(φ) in a Taylor series
with respect to the small solid fraction (A&H). Namely, as φ� 1, one has

K(φ) = 1 +K1φ+K2φ
2 + · · · . (22)

Since generally K ∝ (1 − φ)−m where m > 0 (Worster 1992; Emms & Fowler
1994), implying that K increases with φ, only K1 > 0 and K2 > 0 are considered.
As done by A&W, in order to study the higher-order nonlinear effects due to the
temperature curvature, the non-uniform permeability, and the interaction between the
temperature and the solid fraction on the flow stability, we assume K1 = O(δ). With
this assumption, the slope of the transcritical bifurcation curve of critical Rayleigh
number versus perturbation amplitude (as will be shown in figure 5) corresponding
to a three-dimensional hexagon can change sign in accordance with the variation of
the physical parameters. The details of the physical meaning of this assumption will
be further discussed later.

4. Weakly nonlinear analysis
In (19) there are two small parameters, δ and ε. We follow the approach of A&W,

considering the formal asymptotic expansions in the double limit limδ→0 (limε→0 f(δ, ε))
for the function f(δ, ε); namely δ = O(1) as ε→ 0. The expansions of the perturbation
quantities can be written as

θ̂ = (θ00 + δθ01 + · · ·) + ε(θ10 + δθ11 + · · ·) + ε2(θ20 + δθ21 + · · ·) + · · · , (23a)

Ωφ̂ = (φ00 + δφ01 + · · ·) + ε(φ10 + δφ11 + · · ·)

+ε2
(

1

δ
φ2(−1) + φ20 + δφ21 + · · ·

)
+ · · · , (23b)
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Figure 2. Neutral curves of O(ε0δ0) resulting from three different mathematical models. Thick
curve – model 1: improved model of the present paper; thick curve – model 2: simplified model of
Anderson & Worster (1995); thin curve: two-layer model of Chen et al. (1994). Data are for 26%
ammonium chloride solution.

Ω1/2û = (u00 + δu01 + · · ·) + ε(u10 + δu11 + · · ·) + ε2(u20 + δu21 + · · ·) + · · · , (23c)

Ω1/2R = (R00 + δR01 + · · ·) + ε(R10 + δR11 + · · ·) + ε2(R20 + δR21 + · · ·) + · · · . (23d)

It is noteworthy that (23b) is singular at O(ε2) as δ → 0. This singular term comes

from the forcing term (contributed by φ00) of the equation for φ̂ of O(ε2), indicating

that φ̂ will be of O(ε2δ−1). It is therefore necessary to include the term (1/δ)φ2(−1)

at O(ε2) of (23b) to keep the equation in balance in terms of order of magnitude.
More details will be discussed in § 4.5. To render a meaningful asymptotic expansion
of (23b), one needs ε2δ � 1 (A&W). In the following analysis we will focus on each
order of the expansion of (23) to look into the stability characteristics of the two
possible planforms: the two-dimensional roll and the three-dimensional hexagon.

4.1. O(ε0δ0) solution

By substituting (23) into (19)–(21), we obtain the perturbation equations at O(ε0δ0),
see (A 1) in Appendix A. Note that (A 1) is a set of homogeneous equations and can
be solved by separation of variables. The solutions are of the following form:

θ00 = Θ00(z)η0(x, y, τ), φ00 = Φ00(z)η0(x, y, τ), (24a, b)

w00 = W00(z)η0(x, y, τ), u00 = U00(z)
∂

∂x
η0(x, y, τ), v00 = U00(z)

∂

∂y
η0(x, y, τ).

(24c–e)

The planar function (corresponding to the planform of convection) η0(x, y, τ) satisfies

∇2
Hη0 + k2η0 = 0. (25)

The coefficient functions satisfy an eigenvalue problem, in which the eigenvalues are
R00 and K the wavenumber. The value of k will be fixed at its critical value once the
neutral curve is obtained through (28), and thereafter k is considered to be a fixed
constant in the weakly nonlinear analysis. The solutions are obtained by substituting
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(a)

(b)

(c)

Figure 3. The flow patterns at onset corresponding to the critical points of the three neutral curves
shown in figure 2. (a) Two-layer model, (k, R00) = (2.1802, 5.2353) (Chen et al. 1994); (b) Model 1,
(k, R00) = (2.3262, 5.2055); (c) Model 2, (k, R00) = (π, 2π). It is noted that the difference between the
flow patterns of model 1 and model 2 is only due to the boundary condition (8b). The wavelength
of the convection cell is scaled on the mush depth.

(24) into (A 1) and use (25), yielding

Θ00 = −
[

sin (q1z)

sin (q1)
− sinh (q2z)

sinh (q2)

]
, (26a)

Φ00 = −kR00

C

[
cos (q1z)− cos (q1)

q1 sin (q1)
− cosh (q2z)− cosh (q2)

q2 sinh (q2)

]
, (26b)

W00 = k

[
sin (q1z)

sin (q1)
+

sinh (q2z)

sinh (q2)

]
, U00 =

1

k

[
q1 cos (q1z)

sin (q1)
+
q2 cosh (q2z)

sinh (q2)

]
. (26c, d )

In above equations the parameters q1 and q2 are

q1 =
√
kR00 − k2, q2 =

√
kR00 + k2, (27a, b)

which satisfy the transcendental equation

q1 cot (q1) + q2 coth (q2) = 0. (28)

There are an infinite number of solutions in terms of k and R00 satisfying (27) and
(28), and each of them accounts for a neutral stability curve. The one of lowest R00

is shown in figure 2, denoted ‘model 1’. In this figure the curve denoted ‘model 2’ is
the results we obtain by employing the model considered by A&H and A&W. The
thin curve is the result obtained by Chen et al. (1994), who considered the two-layer
model, i.e. a mushy layer underlying a fluid layer. All these three curves are computed
for the 26% concentration ammonium chloride solution, whose physical properties
are listed in Chen et al. It is seen that the use of the impermeable boundary condition
at the melt/mush interface (model 2) renders a higher R00, i.e. a more stable system,
while the curves of model 1 and the two-layer model are fairly close. In fact, if the
higher-order corrections are included, the curves of both model 1 and model 2 will
move upwards a bit further, rendering an even smaller difference between model
1 and the two-layer model with a larger difference between model 1 and model 2.
Figure 3 illustrates the critical flow patterns corresponding to the three models. Again,
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the flow patterns of model 1 and the two-layer model are very similar, both having
open streamlines which indicate that the flow of both the mush and the overlying
melt are dynamically coupled through the interface. The flow pattern of model 2 is
of smaller wavelength and the circulation is completely enclosed within the mush,
reflecting the assumption that the mush is entirely isolated from the overlying melt. It
is also noted that the flow pattern of model 2 is symmetric with respect to the centre
height of the mush. This is due to the fact that to the present leading-order accuracy
the permeability is uniform and the concentration gradient is linear in the mush.

The planar function η0 of (25) can be written for a mode of wavenumber k as

η0(x, y, τ) = A1(τ) cos (ky) + A2(τ) cos

[
k(
√

3x+ y)

2

]
+ A3(τ) cos

[
k(
√

3x− y)

2

]
.

(29)

This equation accounts for the superposition of three perturbation modes. The phase
of each mode differs from the other by 120◦. When two of the three Ai(τ) are zero,
for instance A1 6= 0 and A2 = A3 = 0, the flow is a two-dimensional roll. When
A1 = A2 = A3, the flow is a three-dimensional hexagon. The time-evolution equations
of Ai(τ) which characterize the stability of the corresponding mode will be derived by
the solvability conditions of the following higher-order analysis.

In the following analysis we will focus on the flow stability close to the critical
point of the curve of model 1, namely

R00 = 5.2055, k = 2.3262, (30a, b)

to investigate the higher-order effects due to both the finite depth of the mush as well
as the finite-amplitude perturbation on the stability of both the two-dimensional roll
and three-dimensional hexagon. Note that the critical point obtained by A&H and
A&W is located at R00 = 2π and k = π, indicating that their system is more stable
than either the present system or the two-layer system.

4.2. O(ε0δ) solution

In this section we investigate the influence of the finite mush depth on the flow
stability. The equations of O(ε0δ) are given by (A 2) in Appendix A. These equations
and those in the following sections are solved by the symbolic computation tool
‘Mathematica’. By substituting (24), (26), (27), (29) and (30) into (A 2), one obtains a
solution of the same form as (24). One needs only to change the index 00 into 01 and
retain η0 to get the solution. This solution actually contains only non-homogeneous
terms since the homogeneous terms have been included in the Ai(τ) of (29).

Equations (A 2a) and (A 2c) are employed to solve for θ01 and w01 and the existence
of the solution requires

R01 = 2.4930
F

C
2
Ω

+ 0.1952Ω. (31)

The first term of the right-hand side of (31) is associated with the third term of the
right-hand side of (A 2a), in which the interaction between the basic-state temperature
and the perturbation of solid fraction is taken into account. The second term of
the right-hand side of (31) mainly results from the consideration of the basic-state
temperature curvature θB1 of (A 2a). The corrected Rayleigh number up to the present
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order, O(ε0δ), is

R = Ω−1/2

(
5.2055 + δ

(
2.4930

F

C
2
Ω

+ 0.1925Ω

)
+ · · ·

)
. (32)

Comparing with the result of A&W

R = Ω−1/2

(
2π+

δF

C
2
Ω

(
4

π
+
π

2

)
+ · · ·

)
, (33)

one sees that (33) again results in a more stable system. Note that since Ω = 1+F/C,
we have Ω = O(1).

4.3. O(εδ0) solution

In this subsection the effect of finite-amplitude perturbation on the flow stability is
considered. We derive the perturbation equations of the present order, O(εδ0), and
the next order, O(εδ). The perturbation equations of O(εδ0) are given by (A 3) in
Appendix A. Due to the presence of the nonlinear advection term and the non-
uniform permeability on the right-hand side of (A 3), there exists three perturbation
modes corresponding to the three wavenumbers k,

√
3k and 2k. The solutions of (A3)

are of the following form:

θ10 = Θ
(c)
10 η1c +Θ

(0)
10 η10 +Θ

(1)
10 η11 +Θ

(2)
10 η12, (34a)

φ10 = Φ
(c)
10η1c + Φ

(0)
10 η10 + Φ

(1)
10 η11 + Φ

(2)
10 η12, (34b)

w10 = W
(c)
10 η1c +W

(0)
10 η10 +W

(1)
10 η11 +W

(2)
10 η12, (34c)

u10 = U
(0)
10

∂η10

∂x
+U

(1)
10

∂η11

∂x
+U

(2)
10

∂η12

∂x
, (34d )

v10 = U
(0)
10

∂η10

∂y
+U

(1)
10

∂η11

∂y
+U

(2)
10

∂η12

∂y
, (34e)

where Θ10, Φ10, W10 and U10 are function of z, and

η1c(τ) =
A2

1 + A2
2 + A2

3

2
, (35a)

η10(x, y, τ) = A2A3 cos (ky)+A3A1 cos

[
k(
√

3x+y)

2

]
+A1A2 cos

[
k(
√

3x−y)

2

]
, (35b)

η11(x, y, τ) = A2A3 cos (
√

3kx) + A3A1 cos

[
k(
√

3x− 3y)

2

]

+A1A2 cos

[
k(
√

3x+ 3y)

2

]
, (35c)

η12(x, y, τ) = A2
1 cos (2ky) + A2

2 cos[k(
√

3x+ y)] + A2
3 cos[k(

√
3x− y)], (35d)

in which the wavenumber of mode η10 is k, of η11 is
√

3k and of η12 is 2k.
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It is seen from (A 3) that R10 appears as the coefficient of the forcing terms
containing w00 and θ00. The value of R10 is therefore related to the form of the
perturbation mode of w00 and θ00. By comparing (29) and (35b), we can define three
parameter R(i)

10, i = 1, 2, 3, corresponding to the three perturbation modes as follows:

R10 =
A2A3

A1

R
(1)
10 for cos (ky) mode, (36a)

R10 =
A3A1

A2

R
(2)
10 for cos

[
k(
√

3x+ y)

2

]
mode, (36b)

R10 =
A1A2

A3

R
(3)
10 for cos

[
k(
√

3x− y)

2

]
mode. (36c)

We substitute (34) and (36) into (A 3) to derive the solvability condition. From this
condition we obtain the following two results:

(i) Two of the three Ai are zero:

R10 = 0 for 2D roll; (37a)

(ii) |A1| = |A2| = |A3| and R(1)
10 = R

(2)
10 = R

(3)
10 = R10:

R10 = −22.7241
K1

CΩ
for 3D hexagon. (37b)

The symbol | | denotes the absolute value. The choice of the sign of the enclosed
Ai(τ) is arbitrary since, by employing a shift of the coordinate in the horizontal
direction, any combination of the sign of Ai(τ) can always be changed into the other.
For example, we consider the combination A1 = A, A2 = A3 = −A and substitute
it into (29) to get a planar function. We then employ a shift of the coordinate
x1 = x− (2/

√
3k)π and obtain a new planar function

η0 = A cos (ky) + A cos

[
k(
√

3x1 + y)

2

]
+ A cos

[
k(
√

3x1 − y)

2

]
, (38)

rendering A1 = A2 = A3 = A. We accordingly consider in the following only the case
of A1 = A2 = A3, which is representative of all the cases.

By comparing (37a, b) with those of A&W, we find that the present results are
similar to theirs: R10 = 0 for a two-dimensional roll and R10 = −(3π2K1)/(2C) for a
three-dimensional hexagon although we note that they omit a factor of 1/Ω in R10

(and also in R11 of (39b)). It is seen from (37) that, since K1, C and Ω are positive,
one has R10 < 0. This situation does not change if the physical parameters are varied,
suggesting that it is therefore necessary to consider further the effect of higher-order,
O(εδ), on the bifurcation characteristics of hexagon convection.

4.4. O(εδ) solution

In this subsection the effects due to both the finite depth of the mush and the finite-
amplitude perturbation on the bifurcation characteristics of hexagon convection are
investigated. The perturbation equations are (A 4) in Appendix A. The solutions of
these equations are of the same form as (34), and can be obtained by simply changing
the index 10 into 11 of all variables except η. Moreover, similarly to (36), we define
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the parameters R(1)
11 ≡ (R11A1)/(A2A3), R

(2)
11 ≡ (R11A2)/(A3A1), R

(3)
11 ≡ (R11A3)/(A1A2),

corresponding to the three different planar perturbation modes and substitute them
into (A 4) to derive the solvability condition. The following two results can then be
obtained by the solvability condition:

(i) Two of the three Ai are zero:

R11 = 0 for 2D roll; (39a)

(ii) |A1| = |A2| = |A3| and R(1)
11 = R

(2)
11 = R

(3)
11 = R11:

R11 = −1.8643Ω + 6.5116
F

C
2
Ω
− 27.1961

K2

C
2
Ω

+K1f(K1) for 3D hexagon. (39b)

In (39b), f(K1) is a first-order polynomial of K1. Since K1 is considered to be O(δ),
there is no need to explicitly show the fourth term because it is smaller by an
order of magnitude than the other terms. Equation (39b) illustrates the higher-order
physical effects (A&W), being accounted for by respectively the four terms on the
right-hand side. First, the effect on the temperature curvature due to the upward-
moving freeing front is shown by the first term. Secondly, the influence imposed by
the interaction between the temperature and the solid fraction is shown by the second
term. Thirdly, the effect of the second-order solid fraction on the permeability (see
(22)) is represented by the third term. Finally, the effect of the first-order solid fraction
on the permeability is included in the fourth term.

Based on the correction at O(ε) shown above, the corrected Rayleigh number can
be written as Rε = ε (R10 + δR11 + O(δ2)), which is

(i) Rε = 0 for 2D roll; (40a)

(ii) Rε = εA(R10 + δR11 + O(δ2)) for 3D hexagon. (40b)

In the following analysis at O(ε2) one will see that the correction of the Rayleigh
number at O(ε2) is proportional to (εA)2. We accordingly find from (23d) that the slope
of the bifurcation curve at εA = 0 can be written as dR/d(εA)|εA= 0 = Ω−1/2(Rε/εA).
Therefore (40) means, for the two-dimensional roll, the slope of the bifurcation curve
is zero, i.e. Rε/εA = 0. For the three-dimensional hexagon, due to the fact that K1 > 0
and R10 < 0 (see (37b)) and if the contribution from the finite mushy-layer depth δ to
R11 is ignored, the slope of the bifurcation curve must be negative, i.e. Rε/εA < 0. To
study the effect of R11 on the slope of the bifurcation, we follow A&W by assuming
the slope of the hexagon bifurcation to be small. This can be done by assuming
K1 = O(δ) and

K1 = δ
CΩ

22.7241
R11 + δεK1. (41)

As a result, the correction to the Rayleigh number of the hexagon is

Rε = −(εA)

[(
22.7241εK1

CΩ

)
δ + O(δ2)

]
. (42)

This leads to a result that the slope Rε/εA is small and proportional to εK1, and
the sign of Rε/εA depends mainly on K1. Note that the value of K1 corresponds to
the value of K1, (41), and the other higher-order effects on R11 as well. As pointed
out by A&W, the purpose of (41) is twofold. First, the stable bifurcation of a three-
dimensional hexagon is close to that of a two-dimensional roll (Rε = 0) so that same
analysis procedure can be applied to the two different types of convection. Secondly,



66 C. A. Chung and F. Chen

10

8

6

4

2

0 3 6 9 12 15

Possible up-centre hexagons

AB

d = 0.1 0.3 0.5 1.0

Possible down-centre hexagons
(expansion invalid)

εb = 0
Wlinear = 0

d#

d&

Figure 4. Regions of different three-dimensional hexagons when K1 = 0 and K2 = 0. The dark
region in the lower-left corner is enclosed by the curve governed by equation (49), in which the
oscillatory model is present. Several thin curves corresponding to different δ are shown. To the left
of each thin curve, the sense of the flow at the hexagon centre is possibly downward, while to the
right the flow at the hexagon centre is possibly upward. Note that K1 = K2 = 0 is the extreme case
where the curve εb = 0 is at the outermost position. Solid circle A: 26% NH4Cl; solid circle B:
30% NH4Cl.

the higher-order effect on R11 is included, leading to the result that Rε/εA may not
be invariably negative so that the higher-order nonlinear effects must be considered.

We illustrate in figure 4 the regions of either positive or negative Rε/εA of the
three-dimensional hexagon. The second curve from the lower-left corner, denoted
εb = 0, is for Rε/εA = 0 (or K1 = 0). The region to the left of this curve is associated
with Rε/εA > 0 (K1 < 0) and that to the right with Rε/εA < 0 (K1 > 0). In figure 4
both K1 and K2 are taken to be zero so that the region of Rε/εA > 0 has the largest
possible area. Note that the curve Rε/εA = 0 (K1 = K2 = 0) of A&W is very close
to the present one while their region of Rε/εA > 0 is smaller. Figure 4 shows that
the region of Rε/εA < 0 is large, covering most of the cases of the experiments. This
implies that the effect of the higher-order correction on the characteristics of hexagon
convection is small since its influence is limited only to a small range of parameter
in which Rε/εA > 0. The thin curves of various δ and the label ‘possible down-centre
hexagons (expansion invalid)’ will be explained in more detail later in § 6.

4.5. O(ε2) solution

In the derivation of the equations at O(ε2), A&W found that in the solute conservation
equation there is a forcing term of O(1/δ), taking into account the variation of solid
fraction with time. The equations corresponding to O(ε2δ−1) are

∂φ2(−1)

∂z
=
∂φ00

∂τ
, (43)

and the corresponding boundary condition at z = 1 is

φ2(−1) = 0. (44)

The solution of (43) and (44) is

φ2(−1) = Φ2(−1)

∂

∂τ
η0, (45a)
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in which

Φ2(−1) = −kR00

C

[
sin (q1z)

q2
1 sin (q1)

− sinh (q2)

q2
2 sinh (q2)

−
(

cot (q1)

q1

− coth (q2)

q2

)
z

− 1

q2
1

+
1

q2
2

+
cot (q1)

q1

− coth (q2)

q2

]
. (45b)

The other equations at the present order are (A 5) and (A 6) in Appendix A. The
solution at the present order contains five different modes, corresponding to the
wavenumbers k,

√
3k, 2k,

√
7k and 3k. However, similarly to the previous lower-

order analysis, the values of R20 and R21 are associated only with the mode of k.
Accordingly, for the convenience of solving these equations, we can let

θ2 = Θ
(1)
2 (z, τ) cos (ky) +Θ

(2)
2 (z, τ) cos

[
k(
√

3x+ y)

2

]

+Θ(3)
2 (z, τ) cos

[
k(
√

3x− y)

2

]
+ other modes, (46a)

w2 = W
(1)
2 (z, τ) cos (ky) +W

(2)
2 (z, τ) cos

[
k(
√

3x+ y)

2

]

+W (3)
2 (z, τ) cos

[
k(
√

3x− y)

2

]
+ other modes. (46b)

In the above equations, ψ2 = ψ20 + δψ21 + · · · and ψ = θ, w,Θ(i),W (i). We substitute
(46) into the perturbation equations at O(ε2) and obtain the solvability condition by
employing the corresponding boundary conditions. From the solvability condition
the amplitude evolution equations of Ai, i = 1, 2, 3, corresponding to the three modes
cos (ky), cos bk(√3x+ y)/2c, and cos bk(√3x− y)/2c are obtained as follows:

aȦ1 = bA2A3 − cA3
1 − dA1(A

2
2 + A2

3) + eA1R2, (47a)

aȦ2 = bA3A1 − cA3
2 − dA2(A

2
3 + A2

1) + eA2R2, (47b)

aȦ3 = bA1A2 − cA3
3 − dA3(A

2
1 + A2

2) + eA3R2, (47c)

in which R2 = R20 + δR21 + · · · and the coefficients of (47) are

a = Ω − 2.4623
F

C
2
Ω

+ O(δ), b = δK1

[
22.7241

e

CΩ
+ O(δ)

]
, (48a, b)

c = 97.1604 + 1207.93
K2

C
2
Ω2

+ O(δ), (48c)

d = 167.024 + 2415.86
K2

C
2
Ω2

+ O(δ), e = 6.0146. (48d, e)

Except for the coefficients, (47) is of the same form as that of A&W. Such equations
can also be seen in a variety of other physical system, such as convection (Segel 1965),
solidification (Brattkus & Davis 1988), combustion (Kuske & Matkowsky 1994), etc.



68 C. A. Chung and F. Chen

The coefficients in (47) determine the stability characteristics of the system, as
will be discussed in § 5. In particular, it is worth noting the sign of a, since a < 0
corresponds to the oscillatory instability (A&W), which will be excluded from the
present paper because only the stationary stability will be considered here. The region
of a < 0, as shown in figure 4 by the dark region in the lower-left corner, is described
by the equation

2.4623
F
δC2

<

(
1 +
F
C
)2

, (49)

which is obtained from (48a) for a < 0. It is noted that this region covers only a
small portion of the parameter range in terms of δC and δF while most of the cases
considered in experiments are located in the region a > 0.

5. Analysis of the amplitude equations
To analyse the amplitude equations (47), we employ a linear stability analysis

to examine the stability characteristics of both the two-dimensional roll and the
three-dimensional hexagon, as shown in the following.

5.1. Two-dimensional roll stability

We consider (A1, A2, A3) = (A, 0, 0) as the equilibrium point and substitute it into (47),
yielding the correction to the Rayleigh number

R2 =
c

e
A2. (50)

To study the stability of the two-dimensional roll, we impose small perturbations with
respect to the equilibrium point. According to the linear analysis, to ensure that the
equilibrium point is stable, one requires

|A| > |A(r)|, (51)

in which

A(r) = b/(d− c). (52)

Equation (51) illustrates that the two-dimensional roll is stable when the perturbation
amplitude in terms of εA is larger than ε|A(r)|. Combining the results of (23d), (30a),
(31), (37a), (39a) and (50), the corrected critical Rayleigh number up to the present
order is

Rrolls = Rlinear + Ω−1/2
[
(εA)2c/e+ · · ·] (53)

in which

Rlinear = Ω−1/2(R00 + δR01 + O(δ2)). (54)

We plot the variation of Rrolls with respect to the perturbation amplitude ε(A1 +
A2 + A3) = εA in figure 5 to illustrate the bifurcation curve of a two-dimensional
roll. This curve is a concave parabolic facing to the right, having a zero slope, i.e.
dRrolls/d(εA) = 0, at ε(A1 + A2 + A3) = 0. When the A of (53) is replaced by the
A(r) of (52), the nonlinear critical Rayleigh number of a two-dimensional roll can be
obtained as

R(r) = Rlinear + Ω−1/2

[
(εb)2c

e(d− c)2

]
. (55)
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Figure 5. Bifurcation diagrams plotted as ε(A1 +A2 +A3) versus Rayleigh number. The thick curves
are for the stable convection while the thin curves represent the unstable convection. (a) εb > 0
(i.e. K1 > 0, R/εA < 0). The two-dimensional roll branch bifurcates supercritically and is stable
when R > R(r). The three-dimensional hexagon branch bifurcates subcritically and becomes a stable
down-centre cell when R(h) > R > R(g) and Wlinear < 0. If Wlinear > 0, the cell becomes up-centre.
(b) εb < 0 (i.e. K1 < 0, R/εA > 0). The two-dimensional roll branch bifurcates supercritically and is
stable when R > R(R). The three-dimensional hexagon branch bifurcates subcritically and becomes
a stable up-centre cell when R(h) > R > R(g) and Wlinear < 0. If Wlinear > 0, the cell becomes
down-centre.

This shows that R(r) > Rlinear , so that the bifurcation of a two-dimensional roll is
supercritical. Note that the curves of the two-dimensional rolls in figures 5(a) and
5(b) are the same.

5.2. Three-dimensional hexagon stability

We consider the equilibrium point (A1, A2, A3) = (A,A, A) and substitute this into (47),
yielding

R2 =
(c+ 2d)

e
A2. (56)
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Similar to the analysis of the two-dimensional roll, we impose a linear analysis on the
equilibrium point to find its stability. To ensure a stable state, one requires

(i) A(g) < A < A(r) as b > 0, (57a)

(ii) A(g) > A > A(r) as b < 0, (57b)

in which A(r) is given by (52) and A(g) is

A(g) =
b

2(c+ 2d)
. (58)

Consequently, the corrected Rayleigh number of a three-dimensional hexagon up
to the present order is obtained by combining the results in (23d), (30a), (31), (37b),
(39b) and (56), yielding

Rhexagons = Rlinear + Ω−1/2

[
−(εA)

(
εb

e

)
+ (εA)2

(
c+ 2d

e

)
+ · · ·

]
(59)

in which Rlinear is given by (54). We plot in figure 5 the bifurcation curve of a three-
dimensional hexagon in terms of Rhexagons versus ε(A1 + A2 + A3) = 3εA. In figure

5(a), where εb > 0 (i.e. K1 > 0, Rε/εA < 0) is considered, the stable region lies in
the quadrant εA > 0. Figure 5(b) depicts the case of εb < 0 (i.e. K1 < 0, Rε/εA > 0),
showing that the stable region lies in the quadrant εA < 0. The Rayleigh number
corresponding to the amplitude 3εA(g) is the global stability limit of the system, which
can be obtained by replacing the A of (59) by (58), yielding

R(g) = Rlinear − Ω−1/2

[
(εb)2

4e(c+ 2d)

]
. (60)

It is seen that R(g) < Rlinear , indicating that the bifurcation of the three-dimensional
hexagon is subcritical. The critical Rayleigh number corresponding to the amplitude
3εA(r), beyond which the three-dimensional hexagon loses its stability, can be obtained
by replacing the A of (59) by (52), yielding

R(h) = Rlinear + Ω−1/2

[
(εb)2(2c+ d)

e(d− c)2

]
. (61)

6. Sense of the flow at the hexagon centre
Tait et al. (1992) found from their experiment using a 28% NH4Cl solution

that the three-dimensional hexagon is a convection of down-flow at the centre and
of up-flow along the perimeters of the hexagon. To investigate this feature, A&H
considered the K1 effect and found that the hexagon is of up-flow at the centre,
quite the opposite to the experimental result. A&W extended the analysis of A&H
by including the asymmetry of the system associated with the density curvature,
higher-order variation of permeability, interaction between temperature and solid
fraction, etc. They identified a small parametric regime in which the down-centre
hexagon is stable. Nevertheless, this regime is still very different from the conditions
in terms of C and F of the experiment of Tait et al. (1992). They attributed this
discrepancy to the use of the impermeable boundary condition at the melt/mush
interface. This conjecture is examined in the present paper, in which the constant
pressure condition is used to replace the impermeable condition. The details are
discussed in the following.
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To examine the sense of the flow at the centre of a hexagon cell, it is necessary to
investigate the vertical velocity w, which can be derived from (17c), (23c) and (24c)
as

w =

(
R

Ω1/2δ

)[
εWlinear (z)η0(x, y, τ) + O(ε2)

]
, (62a)

where

Wlinear (z) = W00(z) + δW01(z) + O(δ2), (62b)

and W00(z) is given by (26c). By solving (A 2a) and (A 2c) with the symbolic compu-
tational tool Mathematica, we obtain W01(z) as

W01(z) = α(0) + (α(0)
c + α(1)

c z + α(2)
c z

2) cos (q1z) + (α(0)
s + α(1)

s z) sin (q1z)

+(α(0)
ch + α

(1)
ch z + α

(2)
ch z

2) cosh (q2z) + (α(0)
sh + α

(1)
sh z) sinh (q2z). (63)

The coefficients are shown in Appendix B. The eigenvalues q1 and q2 of (63) can be
obtained through (27) by considering R00 = 5.2055 and k = 2.3262 as q1 = 2.5880
and q2 = 4.1857. From Appendix B, it is seen that the coefficients can be divided
into two groups. One consists of the terms containing F/C

2
Ω, which are the result

of the interaction between the basic-state temperature and the solid fraction, as
shown by the third term on the right-hand side of (A 2a). The other consists of the
terms containing Ω, which stem from the effects of both the basic-state temperature
curvature θB1 and the vertical gradient of the first-order temperature perturbation
θ00, as shown by respectively the first term containing θ′B1 and the second term on the
right-hand side of (A 2a).

For a three-dimensional hexagon, we have Ai = A, i = 1, 2, 3. The planar function
(29) can be written as

η0(x, y, τ) = A(τ)

{
cos (ky) + cos

[
k(
√

3x+ y)

2

]
+ cos

[
k(
√

3x− y)

2

]}
. (64)

Assume that the centre of the hexagon is located at (x, y) = (0, 0), then η0(0, 0, τ) =
3A(τ). The vertical velocity of the centre is thus

wcentre =
3εR

Ω1/2δ
[A(τ)Wlinear (z)] + O(ε2). (65)

It is seen from (65) that the sign of wcentre depends on the sign of the product of A(τ)
and Wlinear . The sign of A(τ) can be determined from figure 5: as εb > 0, A(τ) > 0 for
a stable hexagon; as εb < 0, A(τ) < 0 for a stable hexagon. Once the sign of Wlinear

is known, the sense of the flow at the centre of the hexagon can be determined as
follows. For εb > 0 (i.e. K1 > 0, Rε/εA < 0) as shown in figure 5(a), the hexagon is
stable only when εA > 0. Accordingly, as can be seen from (65), the hexagon is a
down-centre flow as Wlinear < 0 and is an up-centre flow as Wlinear > 0. For εb < 0
(i.e. K1 < 0, Rε/εA > 0), as shown in figure 5(b), the hexagon can be stable only when
εA < 0, so that it is an up-centre flow as Wlinear < 0 and is a down-centre flow when
Wlinear > 0.

To examine the sign of Wlinear at the top of the mush, we substitute z = 1 into
(62b), yielding

Wlinear (1) = 4.6524− δ
(

1.4104Ω + 54.0076
F

C
2
Ω

)
. (66)

It is noted that the nature of (62b) requires that the series expansion is valid
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asymptotically only as δ approaches zero. To apply the present analysis to a real case,
a finite value of δ must be considered. Consequently, the validity of (66) becomes
questionable. It is seen from (66) that W00(1) contributes only the positive value
4.6524 to Wlinear . As a result, to render a negative Wlinear , W01 must be negative
and of the same magnitude as W00 when δ is of a finite value. This implies that the
asymptotic expansion of (66) up to O(δ) is not accurate enough if Wlinear < 0. Namely,
the asymptotic expansion of (62b) may not be a convergent series if δ is finite and
Wlinear < 0. As we tried to compute W02 for a special case (which is extremely tedious),
we found that there is a trend that the sign of (W00(z),W01(z),W02(z),W03(z), . . .) is
(+, −, +, −, . . .). This indicates that to obtain a negative Wlinear , the expansion of
(62b) up to O(δ) may not be accurate enough to reflect the fact; namely higher-order
terms are required to reach a conclusive result. To obtain a positive Wlinear of a case
of finite δ, on the other hand, (62b) may be good enough to indicate qualitatively
the sense of the flow at the hexagon centre because |W00| > |W01|, and this tendency
seems to apply to higher-order terms.

To the best of our knowledge, it is virtually impossible to solve W02,W03, . . . by
present mathematical tools and (66) may be the best result we can have currently.
We therefore employ (66) to discuss the sense of the flow at the hexagon centre, and
the results are summarized in figure 4. Based on (66), we illustrate in figure 4 several
curves of Wlinear = 0 corresponding to various δ. The region on the right of the curve
accounts possibly (due to inaccurate expansion) for Wlinear (1) > 0 when the accuracy
up to O(δ) is considered, implying that in this parameter regime the convection is
possibly of an up-centre hexagon. In the region on the left of the curve it is possible
that Wlinear (1) < 0 and the convection is possibly of a down-centre hexagon. Due
to the insufficient expansion of the series of (62b), we mark the two regions divided
by the δ curve as respectively ‘possible down-centre hexagon/expansion invalid’ and
‘possible up-centre hexagon’.

In figure 4 the region enclosed by the two curves denoted δ and εb = 0 is that
in which a stable down-centre hexagon may possibly exist. The region decreases
its area with decreasing δ. As δ = 0.1, part of the region εb < 0 (i.e. Rε/εA > 0)
becomes that of a possible down-centre hexagon. As δ approaches zero, the region of
a possible down-centre hexagon is virtually completely covered by εb < 0. In other
words, the down-centre hexagon can be stable in the region Rε/εA > 0, consistent
with the prediction of A&W. To give a hint regarding the conditions considered
in experiments, we also show in figure 4 two solid circles denoted by A and B,
corresponding respectively to the cases of 26% (F = 3.2, C = 12.3, δ = 1) and 30%
ammonium chloride solution (F = 3.2, C = 7, δ = 1).

The possible divergence of the series and the tendency of the negative correction
term of O(δ) may give a clue that the features of the flow in the solidifying mush can
differ from those of a non-reacting porous layer. Through the interaction among the
solidification, the porosity and the resultant active non-uniform permeability, all of
these appear in the correction terms of finite mush depth; an active mushy layer may
consequently allow a down-flow at the centre of the hexagon. This may merit further
research in which the near-eutectic approximation, which assumes δ � 1, is lifted.

7. Variation of solid fraction in the mush
The solid fraction is another interesting factor to be considered for its influence on

the characteristics of the three-dimensional hexagon. By doing some rearrangements
of (17b), (23b) and (24b) and by neglecting higher-order terms, the solid fraction φ
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Figure 6. The vertical distribution of φ along the centreline (thin curve), along the node-line (thick
curve), and of the basic state (dashed curve), which is horizontally independent. For this case,
F = 3, δ = 0.3, C = 8.0 and εA = 0.014. Note that the value of εA is the maximum amplitude
beyond which the φ will become negative.

can be derived as

φ = φB +

(
εA

Ω

)
(Φ00 + δΦ01)η0 + · · · (67)

in which φB is given by (16b), Φ00 by (26b), and η0 by (64). The function Φ01 can be
obtained by solving (A 2a–c) with a similar procedure to § 4.1, yielding

Φ01(z) = β(0) + β(1)z + (β(0)
c + β(1)

c z) cos (q1z) + (β(0)
s + β(1)

s z + β(2)
s z

2) sin (q1z)

+(β(0)
ch + β

(1)
ch z) cosh (q2z) + (β(0)

sh + β
(1)
sh z + β

(2)
sh z

2) sinh (q2z). (68)

The coefficients, as shown in Appendix C, are similar to those shown in Appendix
B, stemming from the same physical mechanisms driving the form of the coefficients
of W01 (equation (63)). Note that the series expansion in (67) may have a similar
problem of slow-convergent rate as that in (62b). In the following we will focus on
the cases corresponding to the possible up-centre hexagon because the expansion can
be more accurate.

Based on (67), we examine the vertical distribution of φ at both the centre point
and the node point of the hexagon. The results are shown in figure 6. In this figure,
the dashed curve accounts for the basic state φB , the thin curve for the φ along the
vertical line through the centre point (the centreline) and the thick curve for the φ
along the vertical line through the node point (the node-line). In figure 6, δ = 0.3,
F = 3 and C = 8.0, and the perturbation amplitude is εA = 0.014. This value of εA is
selected so that φ reaches its positive minimum. In other words, as the perturbation
is larger than these εA, the solid fraction will become negative. Physically, it means
that the solid dissolves and the plume channel forms (A&H).

The case of figure 6 lies in the region corresponding to a possible up-centre
hexagon. The solid fraction along the centreline decreases under the perturbation and
its minimum occurs in the interior of the mush, implying that the channel may be
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initiated from the interior of the mush. We note that the result of figure 6 is similar
to that obtained by Schulze & Worster (1999, figure 5) in which the nonlinear two-
dimensional roll convection was computed numerically and showed that the plume
may possibly be initiated within the mush. We noted also from the calculations of
other relevant cases that the minimum solid fraction occurs at the top of the mush
when C is small, but occurs in the interior of the mush when C is larger. It can be
seen from the basic-state solid fraction of (16b) that, although the solid fraction at the
top is always the minimum, the vertical gradient of the solid fraction increases when
C is smaller, so that for a larger C the vertical gradient of solid fraction is small,
resulting in a mush of virtually uniformly small solid fraction. After being perturbed,
accordingly, the opportunity for the generation of the chimney from the interior of
the mush is higher.

8. Global stability analysis
To investigate the global stability of the system, the values of both Rlinear and R(g)

for various δ, F, K1 and C, are computed by employing respectively (54) and (60),
and the results are shown in figure 7. For each case shown in figure 7, three of the
four parameters are fixed and one varies, while K2 = 0. Results show that, except
figure 7(c) regarding the influence of δ, the effects due to varying F, K1 and C on
the stability of the system are similar to those obtained by A&W, to which the reader
may refer for the physical background. By and large, for all the cases considered
Rlinear is invariably larger than R(g), indicating that the system is always of subcritical
instability in spite of the varying physical parameters.

The influence of δ found by the present study is however different from that
of A&W, which is explained in the following. Figure 7(c) shows that Rlinear in-
creases with δ constantly, contradicting the result of A&W which showed that
Rlinear remains constant in spite of varying δ. This discrepancy stems from the
Rayleigh number correction due to finite δ (equation (31)) which can be rewritten
as δR01 = 2.4930F/C2Ω + 0.1925Ωδ. It is the term 0.1925Ωδ which makes Rlinear

increase linearly with δ. This term results from the effects due to the asymmetry of
the boundary conditions and the temperature curvature. With regard to the variation
of R(g), it essentially follows the trend of Rlinear except near the two ends of the curve,
i.e. δ = 0 and δ = 1. Near δ = 0 the deviation of R(g) from Rlinear is due to the
fact that C = δC → 0 as δ → 0, (37b), augmenting the effect due to the variation
of permeability. Near δ = 1, according to the first term on the right-hand side of
(39b), the effect due to the temperature curvature leads to the deviation of the two
Rayleigh numbers. It is noteworthy that except for δ → 0 the slope increment of R(g)

is very close to that of Rlinear , which is approximately 0.1925Ω, and so is less than
unity. Consequently, the mushy-layer Rayleigh number R(g)

m decreases with increas-
ing δ unless δ → 0 (equation (11c)), suggesting that the system is less stable as δ
increases.

9. Comparison of critical Rayleigh numbers
In the experiment using the 28% ammonium chloride solution, Tait et al. (1992)

(TJJ) studied the stability of plume convection by decreasing gradually the cooling
temperature at the mush/solid interface and determined the critical Rayleigh number
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Figure 7. The variations of the global critical Rayleigh number R(g) and the linear critical Rayleigh
number Rlinear versus different physical parameters. In each part K2 = 0 and one parameter varies
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of the onset of the plume convection as

RTJJ =
gγ∆TmHΠ0

κµ
= 25, (69)

in which γ = ρ0(α
∗ − β∗/Γ ), ∆Tm is the temperature difference between the top and

the bottom of the mush, and H is the depth of the mush. We compare (69) with the
Rayleigh number Rm of (5c) and note that ∆Tm/Γ∆C = O(1) and H/(κ/V ) = δ ≈ 1,
yielding

RTJJ

Rm
=

∆TmH

Γ∆Cκ/V
= O(1). (70)

From (60) we can compute the global Rayleigh number for the 28% ammonium
chloride solution (C ≈ 9, F ≈ 3.2, δ ≈ 1 and assume K1 = 0.1, K2 = 0) and obtain
R(g) = 4.6873. Substituting this into (11c) we obtain the global critical Rayleigh
number for the mush.

R(g)
m = 20. (71)

By comparing (69) and (71), we obtain RTJJ /R
(g)
M = 1.25, which is consistent with

the estimation shown in (70). Equation (71) also illustrates the reasonable outcome
that the theoretical prediction of the critical Rayleigh number, (71), is lower than the
experimental one, (69), because in the experiment the system is already beyond the
condition of onset when the plume is observed.
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We also computed the critical Rayleigh number based on the mathematical model
considered by A&W. The result is Rm = 30, which shows again that the imposition
of the impermeable boundary condition on the melt/mush interface leads to a more
stable state of mush.

10. Concluding remarks
We have employed a weakly nonlinear analysis to investigate the stability char-

acteristics of convection in a mush with special attention paid to the stability of
the three-dimensional hexagon, which corresponds to the onset of plume convection.
We extended the analyses of A&H and A&W, by considering a mathematical model
including the more realistic constant-pressure (or permeable) boundary condition
at the melt/mush interface. We employed the asymptotic expansion considered by
A&W to analyse the nonlinear behaviour of both the two-dimensional roll and the
three-dimensional hexagon convection. Several conclusions are drawn in the following.

(i) The superiority of the constant pressure condition (8b) has been justified by
the present analysis, since the results obtained under this condition show a trend of
better agreement with experimental results than those of A&H and A&W, wherein
an impermeable condition is instead employed. This reflects the fact that the vertical
flow through the melt/mush interface is of significant influence on the stability in
the mush. We therefore infer that by considering the vigorous salt-finger convection
above the melt/mush interface (Emms & Fowler 1994) or by analysing directly the
two-layer system (Chen et al. 1994), the analytical results could compare even more
favourably with the results of experiment.

(ii) The sense of the flow at the centre of a three-dimensional hexagon depends
not only on the factors considered by A&H and A&W, but also on the factors
corresponding to the asymmetry of the boundary conditions as well as the finite
depth of the mush. The effects from the correction terms corresponding to the finite
depth of the mush give a clue that an active mushy layer may allow a down-flow
at the centre of the hexagonal cell. This may merit further research in which the
near-eutectic approximation, i.e. δ � 1, is lifted.

(iii) We find from the analysis with respect to the variation of solid fraction that,
if C is small the minimum solid fraction occurs at the top of the mush, implying that
the channel of the plume is initiated from the top of the mush and grows gradually
downwards into the mush. If C is large, the minimum solid fraction may occur
within the mush, suggesting that the channel may be initiated from the interior of the
mush and grow upwards through only part of the mush. This scenario is supported
by the results obtained by Schulze & Worster (1999) who implemented a nonlinear
computation for the two-dimensional roll in the mush.

(iv) From the analysis of the amplitude equation, we find that the stability of
the three-dimensional hexagon is invariably subcritical because R(g) < Rlinear . The
variations of R(g) and Rlinear with F and C have the same trend and the difference
between R(g) and Rlinear is generally small. Regarding the effects due to δ and k1, the
difference between R(g) and Rlinear is larger, which provides a good opportunity for the
more accurate design of a manufacturing process for the solidification of industrial
castings without freckles.

The financial support from National Science Council of Taiwan through Grant
NSC 88-2212-E-002-018 is gratefully acknowledged.
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Appendix A. The perturbation equations
The perturbation equations of different order of magnitude resulting from the

weakly nonlinear analysis in § 4 are as follows.

O(ε0δ0):

∇2θ00 − R00w00 = 0,
∂

∂z
φ00 − R00

C
w00 = 0, (A 1a, b)

∇2w00 + R00∇2
Hθ00 = 0, ∇2u00 − R00

∂2

∂x∂z
θ00 = 0, (A 1c, d )

∇2v00 − R00

∂2

∂y∂z
θ00 = 0. (A 1e)

O(ε0δ1) :

∇2θ01 − R00w01 = (R01 + R00θ
′
B1)w00 − Ω ∂

∂z
θ00 +

(
Ω − 1

Ω

)
∂

∂z
(θB0φ00), (A 2a)

∂

∂z
φ01 − R00

C
w01 =

(R01 + R00θ
′
B1)

C
w00 − Ω

C

∂

∂z
θ00 +

1

C

∂

∂z
(θB0φ00), (A 2b)

∇2w01 + R00∇2
Hθ01 = −R01∇2

Hθ00 +K1

∂

∂z

(
φ′B0w00

)−K1∇2
(
φB0w00

)
, (A 2c)

∇2u01 − R00

∂2

∂x∂z
θ01 = R01

∂2

∂x∂z
θ00 +K1

∂

∂x

(
φ′B0W00

)−K1∇2
(
φB0u00

)
, (A 2d )

∇2v01 − R00

∂2

∂y∂z
θ01 = R01

∂2

∂y∂z
θ00 +K1

∂

∂y

(
φ′B0W00

)−K1∇2
(
φB0v00

)
. (A 2e)

O(ε1δ0) :

∇2θ10 − R00w10 = R10w00 + R00u00 · ∇θ00, (A 3a)

∂

∂z
φ10 − R00

C
w10 =

R10

C
w00 +

R00

C
u00 · ∇θ00, (A 3b)

∇2w10 + R00∇2
Hθ10 = −R10∇2

Hθ00 +
K1

Ω

∂

∂z
(u00 · ∇φ00)− K1

Ω
∇2(φ00w00), (A 3c)

∇2u10 − R00

∂2

∂x∂z
θ10 = R10

∂2

∂x∂z
θ00 +

K1

Ω

∂

∂x
(u00 · ∇φ00)− K1

Ω
∇2(φ00u00), (A 3d )

∇2v10 − R00

∂2

∂y∂z
θ10 = R10

∂2

∂y∂z
θ00 +

K1

Ω

∂

∂y
(u00 · ∇φ00)− K1

Ω
∇2(φ00v00). (A 3e)
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O(ε1δ1) :
∇2θ11 − R00w11 = (R01 + R00θ

′
B1)w10 + R10w01 + (R11 + R10θ

′
B1)w00

+R00(u00 · ∇θ01 + u01 · ∇θ00) + R01u00 · ∇θ00

+

(
Ω − 1

Ω

)
∂

∂z
(θ00φ00 + θB0φ10)− Ω ∂

∂z
θ10, (A 4a)

C
∂

∂z
φ11 − R00w11 = (R01 + R00θ

′
B1)w10 + R10w01 + (R11 + R10θ

′
B1)w00

+R00(u00 · ∇θ01 + u01 · ∇θ00) + R01u00 · ∇θ00

+
∂

∂z
(θ00φ00 + θB0φ10)− Ω ∂

∂z
θ10, (A 4b)

∇2w11 + R00∇2
Hθ11 = −R11∇2

Hθ00 − R10∇2
Hθ01 − R01∇2

Hθ10

+
K1

Ω

∂

∂z
(Ωφ

′
B0w10 + u01 · ∇φ00 + u00 · ∇φ01)

+
2K2

Ω

∂

∂z
[u00 · ∇(φB0φ00)]

−K1

Ω
∇2(ΩφB0w10 + φ00w01 + φ01w00)

−2K2

Ω
∇2(φB0φ00w00), (A 4c)

∇2u11 − R00

∂2

∂x∂z
θ11 = R11

∂2

∂x∂z
θ00 + R10

∂2

∂x∂z
θ01 + R01

∂2

∂x∂z
θ10

+
K1

Ω

∂

∂x

(
Ωφ′B0w10 + u01 · ∇φ00 + u00 · ∇φ01

)
+

2K2

Ω

∂

∂x
[u00 · ∇(φB0φ00)]

−K1

Ω
∇2(ΩφB0u10 + φ00u01 + φ01u00)

−2K2

Ω
∇2(φB0φ00u00), (A 4d )

∇2v11 − R00

∂2

∂y∂z
θ11 = R11

∂2

∂y∂z
θ00 + R10

∂2

∂y∂z
θ01 + R01

∂2

∂y∂z
θ10

+
K1

Ω

∂

∂y
(Ωφ′B0w10 + u01 · ∇φ00 + u00 · ∇φ01)

+
2K2

Ω

∂

∂y
[u00 · ∇(φB0φ00)]

−K1

Ω
∇2(ΩφB0v10 + φ00v01 + φ01v00)

−2K2

Ω
∇2(φB0φ00v00). (A 4e)
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O(ε2δ0) :

∇2θ20 − R00w20 = R20w00 + R10w10 + R10u00 · ∇θ00 + R00(u00 · ∇θ10 + u10 · ∇θ00)

+

(
1− 1

Ω

)[
∂

∂z
(θB0φ2(−1))− θB0

∂φ00

∂τ

]
+ Ω

∂θ00

∂τ
, (A 5a)

C
∂

∂z
φ20 − R00w20 = R20w00 + R10w10 + R10u00 · ∇θ00

+R00(u00 · ∇θ10 + u10 · ∇θ00) +
∂

∂z
(θB0φ2(−1))

−θB0

∂φ00

∂τ
+ C

∂φ01

∂τ
+ Ω

∂θ00

∂τ
, (A 5b)

∇2w20 + R00∇2
Hθ20 =

K1

Ω

[
∂

∂z
(u10 · ∇φ00 + u00 · ∇φ10)− ∇2(φ00w10 + φ10w00)

]
+
K2

Ω2

[
∂

∂z
(u00 · ∇φ2

00)− ∇2(φ2
00w00)

]
−R20∇2

Hθ00 − R10∇2
Hθ10, (A 5c)

∇2u20 − R00

∂

∂x∂z
θ20 =

K1

Ω

[
∂

∂x
(u10 · ∇φ00 + u00 · ∇φ10)− ∇2(φ00u10 + φ10u00)

]
+
K2

Ω2

[
∂

∂x
(u00 · ∇φ2

00)− ∇2(φ2
00u00)

]
+R20

∂2

∂x∂z
θ00 + R10

∂2

∂x∂z
θ10, (A 5d )

∇2v20 − R00

∂2

∂y∂z
θ20 =

K1

Ω

[
∂

∂y
(u10 · ∇φ00 + u00 · ∇φ10)− ∇2(φ00v10 + φ10v00)

]
+
K2

Ω2

[
∂

∂y
(u00 · ∇φ2

00)− ∇2(φ2
00v00)

]
+R20

∂2

∂y∂z
θ00 + R10

∂2

∂y∂z
θ10. (A 5e)

O(ε2δ1) :

∇2θ21 − R00w21 = R21w00 + R20(w01 + θ′B1w00) + R11w10 + R10(w11 + θ′B1w10)

+(R01 + R00θ
′
B1)w20 − Ω∂θ20

∂z
+ R00u00 · ∇θ11

+(R00u01 + R01u00) · ∇θ10 + (R00u10 + R10u00) · ∇θ01

+(R00u11 + R01u10 + R10u01 + R11u00) · ∇θ00

+

(
1− 1

Ω

)
∂

∂z
(θB1φ2(−1) + θB0φ20 + θ00φ10 + θ10φ00)

−
(

1− 1

Ω

)(
θB0

∂φ01

∂τ
+ θB1

∂φ00

∂τ

)
+ Ω

∂θ01

∂τ
− F

C
φB0

∂θ00

∂τ
,

(A 6a)
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C
∂

∂z
φ21 − R00w21 = R21w00 + R20(w01 + θ′B1w00) + R11w10 + R10(w11 + θ′B1w10)

+(R01 + R00θ
′
B1)w20 − Ω∂θ20

∂z
+ R00u00 · ∇θ11

+(R00u01 + R01u00) · ∇θ10 + (R00u10 + R10u00) · ∇θ01

+(R00u11 + R01u10 + R10u01 + R11u00) · ∇θ00

+
∂

∂z
(θB1φ2(−1) + θB0φ20 + θ00φ10 + θ10φ00)

−θB0

∂φ01

∂τ
− θB1

∂φ00

∂τ
+ Ω

∂θ01

∂τ
− ΩφB0

∂θ00

∂τ
+ C

∂φ02

∂τ
, (A 6b)

∇2w21 + R00∇2
Hθ21 = −R21∇2

Hθ00 − R01∇2
Hθ20 − R11∇2

Hθ10

−R10∇2
Hθ11 − R01∇2

Hθ20

+
K1

Ω

∂

∂z
(Ωφ′B0w20 + u11 · ∇φ00 + u10 · ∇φ01

+u01 · ∇φ10 + u00 · ∇φ11)

+
K2

Ω2

∂

∂z

[
2Ω(u10 · ∇(φB0φ00) + u00 · ∇(φB0φ10))

+2u00 · ∇(φ00φ01) + u01 · ∇φ2
00

]
+

3K3

Ω2

∂

∂z

[
u00 · ∇(φB0φ

2
00)
]− K1

Ω
∇2
(
ΩφB0w20 + φ00w11

+φ01w10 + φ10w01 + φ11w00)

−K2

Ω2
∇2
[
2ΩφB0(φ00w10 + φ10w00) + 2φ00φ01w00 + φ2

00w01

]
−3K3

Ω2
∇2(φB0φ

2
00w00). (A 6c)

Appendix B. The coefficients for W01

The coefficients of (63) for W01 are

α(0) = 2.5120
F

C
2
Ω
, α(0)

c = −1.6282
F

C
2
Ω
, α(1)

c = −0.2183
F

C
2
Ω

+ 2.9708Ω,

α(2)
c = 2.5879
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2
Ω
− 2.5879Ω, α(0)

s = −53.9436
F

C
2
Ω
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α(1)
s = −0.1063

F

C
2
Ω

+ 0.9999Ω, α
(0)
ch = −0.8839

F

C
2
Ω
,

α
(1)
ch = −0.002159

F

C
2
Ω
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F

C
2
Ω
− 0.02560Ω,
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α
(0)
sh = 0.03640

F

C
2
Ω
− 0.03136Ω, α

(1)
sh = −0.01158

F

C
2
Ω

+ 0.006115Ω.

Appendix C. The coefficients for Φ01

The coefficients of (68) for φ01 are

β(0) =
1

C

(
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C
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F

C
2
Ω
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)
,
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F
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(
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2
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,
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(
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C
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F
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2
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,
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(0)
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1

C

(
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2
Ω
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(
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F

C
2
Ω

+ 0.03654Ω

)
,

β
(2)
sh =

0.03183

C

(
F

C
2
Ω
− Ω

)
.
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